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C O N S P E C T U S

Multidimensional electronic and vibrational spectroscopies have established them-
selves over the last decade as uniquely detailed probes of intramolecular struc-

ture and dynamics. However, these spectroscopies can also provide powerful tools for
probing solute-solvent interactions and the solvation dynamics that they give rise to.
To this end, it should be noted that multidimensional spectra can be expressed in terms
of optical response functions that differ with respect to the chromophore’s quantum
state during the various time intervals separating light-matter interactions. The
dynamics of the photoinactive degrees of freedom during those time intervals (that is,
between pulses) is dictated by potential energy surfaces that depend on the corre-
sponding state of the chromophore. One therefore expects the system to hop between
potential surfaces in a manner dictated by the optical response functions. Thus, the
corresponding spectra should reflect the system’s dynamics during the resulting
sequence of nonequilibrium solvation processes. However, the interpretation of mul-
tidimensional spectra is often based on the assumption that they reflect the equilib-
rium dynamics of the photoinactive degrees of freedom on the potential surface that
corresponds to the chromophore’s ground state.

In this Account, we present a systematic analysis of the signature of nonequilib-
rium solvation dynamics on multidimensional spectra and the ability of various com-
putational methods to capture it. The analysis is performed in the context of the
following three model systems: (A) a two-state chromophore with shifted harmonic
potential surfaces that differ in frequency, (B) a two-state atomic chromophore in an
atomic liquid, and (C) the hydrogen stretch of a moderately strong hydrogen-bonded

complex in a dipolar liquid. The following computational methods are employed and

compared: (1) exact quantum dynamics (model A only), (2) the semiclassical forward-backward initial value representa-

tion (FB-IVR) method (models A and B only), (3) the linearized semiclassical (LSC) method (all three models), and (4) the stan-

dard ground-state equilibrium dynamics approach (all three models).

The results demonstrate how multidimensional spectra can be used to probe nonequilibrium solvation dynamics in real

time and with an unprecedented level of detail. We also show that, unlike the standard method, the LSC and FB-IVR meth-

ods can accurately capture the signature of solvation dynamics on the spectra. Our results also suggest that LSC and FB-

IVR yield similar results in the presence of rapid dephasing, which is typical in complex condensed-phase systems. This

observation gives credence to the use of the LSC method for modeling spectra in complex systems for which an exact or

even FB-IVR-based calculation is prohibitively expensive.
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I. Introduction

Multidimensional electronic and vibrational spectroscopies

have long been recognized as extremely powerful and

uniquely detailed probes of the structure and dynamics of

molecular systems and have been used to elucidate a vari-

ety of processes on a wide range of time scales, including pop-

ulation and phase relaxation, energy and coherence transfer,

intramolecular vibrational dynamics, chemical exchange, and

conformational dynamics.1-4 It is also widely accepted that

molecularly detailed and dynamically accurate models are

necessary in order to take full advantage of these capabili-

ties. However, accomplishing this objective requires overcom-

ing a number of nontrivial theoretical and computational

challenges, including the design of spectroscopically accurate

force fields, the choice of a proper dynamical treatment, and

the development of schemes for calculating spectral signals

that are both feasible and self-consistent.

Multidimensional spectra are often given in terms of opti-

cal response functions (ORFs).1 However, a quantum-mechan-

ically exact calculation of these ORFs is not feasible in most

cases of practical interest. Mixed quantum-classical meth-

ods, which are based on treating a small subset of the degrees

of freedom (DOF) quantum-mechanically while the rest are

treated in a classical-like manner, therefore represent an

attractive approach. However, taking the classical limit of the

ORFs with respect to a subset of DOF in a direct manner is

known to lead to expressions that are not unique.5-11 In prac-

tice, the working expressions for the ORFs are often obtained

in an ad-hoc manner to allow for their calculation from equi-

librium classical molecular dynamics simulations of the pho-

toinactive DOF on the potential surface that corresponds to the

ground state of the photoactive DOF (see section IID). In what

follows, we will refer to this approach as the ground state (GS)

method.

A more rigorous approach toward calculating ORFs is based

on linearizing the path-integral forward-backward action

associated with the photoinactive DOF with respect to the dif-

ference between the forward and backward paths (see sec-

tion IIC).9,11-16 Within this approach, one calculates the ORFs

by propagating the classical DOF forward in time along a clas-

sical trajectory that hops between potential surfaces corre-

sponding to various quantum states of the chromophore, as

dictated by the Liouville pathway associated with each ORF.11

In what follows, we will refer to this approach as the linear-

ized semiclassical (LSC) method.

Another rigorous approach to computing ORFs is based on

replacing the product of quantum propagators that appears

in the expressions for the ORFs by the corresponding forward-
backward semiclassical propagators.9,11,12,17-22 In what fol-

lows, we will refer to this approach as the forward-backward
initial-value representation (FB-IVR) method (see section IIB).

In this Account, we present the results of a systematic

investigation of the signature of nonequilibrium solvation

dynamics on multidimensional spectra in three model sys-

tems: (A) a two-state chromophore with shifted harmonic

potential surfaces that differ in frequency, which serves as a

benchmark for which the quantum-mechanically exact ORFs

can be computed; (B) an atomistically detailed model of an

atomic chromophore in a two-dimensional atomic liquid, for

which it is feasible to compute the ORFs via FB-IVR; and (C) a

molecularly detailed model of a hydrogen-bonded (H-bonded)

complex in a dipolar liquid, for which LSC and GS are the only

feasible options. The ability of the LSC and FB-IVR approaches

to accurately capture nonequilibrium solvation is first estab-

lished in the context of model A. The ability of LSC to yield

results similar to those obtained via FB-IVR, in the presence of

rapid dephasing, is then established in the context of model

B. Finally, model C is used to demonstrate the information-

rich signature of nonequilibrium solvation on multidimen-

sional spectra of a relatively complex molecular system within

the framework of the LSC method.

The remainder of this Account is organized as follows: In

section II, we present the exact quantum-mechanical expres-

sions for the multidimensional spectra (section IIA) and for-

mulate the corresponding FB-IVR (section IIB), LSC (section IIC),

and GS (section IID) approximations. The results for the vari-

ous model systems are presented and discussed in sections III,

IV, and V. Conclusions and outlook are provided in section VI.

II. Theory

A. Third-Order Optical Response Functions and Multi-
dimensional Spectra. For the sake of simplicity, we restrict

ourselves to the case of a two-state system with the follow-

ing generic field-free Hamiltonian:

Here, |g〉 and |e〉 are the adiabatic ground and excited states

of the chromophore, Ĥg/e ) T(P̂) + Vg/e(Q̂) are the correspond-

ing adiabatic Hamiltonians, T(P̂) and Vg/e(Q̂) are the kinetic and

potential energy, respectively, and Q̂ ) (Q̂1,..., Q̂N) and P̂)
(P̂1,..., P̂N) are the coordinates and momenta of the photoinac-

tive DOF.

The measurement of multidimensional spectra involves

three sequential laser pulses with wave vectors ka, kb, and kc;

Ĥ ) |g〉Ĥg〈g| + |e〉Ĥe〈e| (1)
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t1 is the time delay between pulses a and b, and t2 is the time

delay between pulses b and c. These three pulses create a

third-order polarization in the sample, which gives rise to a sig-

nal field that is heterodyne detected at a time interval t3 after

pulse c, in the background-free directions kr ) -ka + kb + kc

and knr ) ka - kb + kc, corresponding to the rephasing and

nonrephasing signals, respectively.2 Assuming that the pulses

are weak and impulsive, the nonrephasing and rephasing sig-

nals are given by1

and

where the ORFs {R1,R2,R3,R4} are explicitly given by1

Here, the trace is over the photoinactive DOF, µ̂ge ) µge(Q̂) )
µeg

† (Q̂) is the transition dipole moment (an operator in the Hil-

bert space of the photoinactive DOF), and F̂g ) e-�Ĥg/Tr[e-�Ĥg]

is the equilibrium ground-state density operator, with � )
1/(kBT). Finally, measurements of third-order optical response

are often conveniently reported in terms of a two-dimensional

(2D) spectrum, which is defined by

B. The FB-IVR Approximation. Within the simplest

implementation of the FB-IVR approximation, one starts by

assuming that µge(Q̂)fµge is constant (the Condon approx-

imation), followed by replacing the remaining overall
forward-backward time propagators in eqs 4-7 by the cor-

responding semiclassical Herman-Kluk propagators12,23 so

that9,11,17-20

Here, |gPtQt〉 is a coherent state,

where γ is a constant positive definite matrix, which is

assumed to be diagonal in what follows; D(P0,Q0) is the

Herman-Kluk prefactor and {Si} are the forward-backward

actions (the explicit expressions can be found in ref 11).

These actions are calculated along classical trajectories,

which are propagated forward in time from time 0 to t1 +
t2 + t3 and then backward in time from time t1 + t2 + t3 to

0. It should also be noted that throughout these

forward-backward trajectories, the system hops between

the ground and excited potential surfaces according to eqs

4-7.

C. The LSC Approximation. The LSC approximation is

based on writing the ORFs in a path integral form and linear-

izing the path-integral forward-backward action with respect

to the difference between the forward and backward

paths.9,11,13-16 It leads to expressions for the ORFs of the fol-

lowing form:

Here, + and - correspond to rephasing ORFs (R2,R3) and non-

rephasing ORFs (R1,R4), respectively, Fg,W(Q,P) is the Wigner

transform of F̂g,

µge(Q) is the transition dipole moment at the classical bath con-

figuration Q (which can be assumed to be real without loss of

generality), and U(Qτ) ) Ve(Qτ) - Vg(Qτ). Importantly, {Qτ} are

classical trajectories whose initial states are sampled from

Fg,W(Q0,P0) and that hop between potential surfaces as they

are propagated forward in time from time 0 to t1 + t2 + t3.
More specifically, the propagation takes place on the aver-

age potential surface, Vge ) (Vg + Ve)/2, during (0, t1) and (t1

Rnr(t3, t2, t1) ) R1(t3, t2, t1) + R4(t3, t2, t1) (2)

Rr(t3, t2, t1) ) R2(t3, t2, t1) + R3(t3, t2, t1) (3)

R1(t3, t2, t1) )

Tr[F̂g eiĤgt1⁄p µ̂ge eiĤet2⁄p µ̂eg eiĤgt3⁄p µ̂ge e-iĤe(t1+t2+t3)⁄p µ̂eg] (4)

R2(t3, t2, t1) )

Tr[F̂g eiĤe(t1+t2)⁄p µ̂eg eiĤgt3⁄p µ̂ge e-iĤe(t2+t3)⁄p µ̂eg e-iĤgt1⁄p µ̂ge] (5)

R3(t3, t2, t1) )

Tr[F̂g eiĤet1⁄p µ̂eg eiĤg(t2+t3)⁄p µ̂ge e-iĤet3⁄p µ̂eg e-iĤg(t1+t2)⁄p µ̂ge] (6)

R4(t3, t2, t1) )

Tr[F̂g eiĤg(t1+t2+t3)⁄p µ̂ge e-iĤet3⁄p µ̂eg e-iĤgt2⁄p µ̂ge e-iĤet1⁄p µ̂eg] (7)

I(ω3, t2, ω1) ≡ Re∫0

∞
dt1∫0

∞
dt3{e

i(ω1t1+ω3t3) Rnr(t3, t2, t1) +

ei(-ω1t1+ω3t3) Rr(t3, t2, t1)} (8)

Ri
FB-IVR(t3, t2, t1) )

|µge|
4 1

(2πp)N
∫ dQ0 dP0 D(P0, Q0)〈gP0Q0

|F̂g|gPfQf
〉 ei⁄pSi (9)

〈Q|gPtQt
〉 ) (1π )N⁄4

(det γ)1⁄4 exp(- 1
2

(Q - Qt)
T · γ · (Q - Qt) +

i
p

Pt · (Q - Qt)) (10)

Rj
LSC(t3, t2, t1) )

1

(2πp)N
∫ dQ0 dP0 Fg,W(Q0, P0)µge(Q0) ×

µge(Qt1
)µge(Qt1+t2

)µge(Qt1+t2+t3
) e-i∫

0

t1
dτU(Qτ)⁄p e-i∫

t1+t2

t1+t2+t3
dτU(Qτ)⁄p ≡

〈µge(Q0)µge(Qt1
)µge(Qt1+t2

)µge(Qt1+t2+t3
) e-i∫

0

t1
dτU(Qτ)⁄p e-i∫

t1+t2

t1+t2+t3
dτU(Qτ)⁄p〉g,W

(11)

Fg,W(Q, P) )∫ d∆ e-iP · ∆⁄p〈Q + ∆
2

|F̂g|Q - ∆
2 〉 (12)
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+ t2, t1 + t2 + t3), and on either the excited-state potential sur-

face, Ve (in the case of R1 and R2), or the ground-state poten-

tial surface, Vg (in the case of R3 and R4), during (t1, t1 + t2).

Finally, it should be noted that in deriving eq 11, we have

neglected the quantum nature of the transition dipole moment

operator, µge(Q̂), which is expected to be a reasonable approx-

imation at ambient conditions.

D. The GS Approximation. The GS approximation can be

obtained with the help of the following identity:1

Here, exp+ corresponds to a positively time-ordered exponen-

tial, Ĥref is an arbitrarily chosen reference Hamiltonian and

The GS approximation relies on the ad-hoc choice of the ref-

erence Hamiltonian as the ground-state Hamiltonian: Ĥref )
Ĥg. For example, applying the identity in eq 13, with the

choice of Ĥref ) Ĥg, to the ORF R1(t1, t2, t3) in eq 4 yields

where exp- corresponds to a negatively time-ordered expo-

nential, Û(t) ) exp[iĤgt/p][V̂e - V̂g] exp[-iĤgt/p] and µ̂ge(t) )
exp[iĤgt/p] µ̂ge exp[-iĤgt/p]. Taking the “classical limit” of

R1(t1,t2,t3) corresponds to replacing the trace by a phase-space

average, F̂g by the corresponding ground-state equilibrium

phase-space density Fg,cl(Q0,P0), Â(t) by its classical analogue

A[Qt], where Qt is a classical trajectory on the ground-state

potential surface, and the time-ordered exponentials by reg-

ular exponentials. The resulting GS approximation for

R1(t1,t2,t3) is then given by

Similar approximations can be obtained for the other ORFs,

yielding R4
GS(t3,t2,t1) ) R1

GS(t3,t2,t1) and

Although the GS approximation in eqs 16 and 17 is simi-

lar in form to the LSC approximation, eq 11, it differs from it

in two important respects, namely:

• The classical trajectories in the case of GS take place exclu-

sively on the ground-state potential surface.

• The sampling of the initial state in the case of GS is based

on the classical ground-state Boltzmann probability den-

sity rather than the Wigner transform of the correspond-

ing quantum-mechanical density operator.

It should also be noted that unlike the FB-IVR and LSC

approximations, which reflect nonequilibrium dynamics on

multiple potential surfaces, the GS approximation reflects equi-
librium dynamics on the ground-state potential surface.

III. A Two-State Chromophore with Shifted
Different-Frequency Harmonic Potential
Surfaces
The first model that we will consider contains a single photo-

inactive mode and assumes that the potential energy surface

as a function of this mode’s displacement is harmonic in both

the ground and excited states:

Here, Q̂ is the mass-weighted displacement of the photoinac-

tive mode, ωg and ωe are its harmonic frequencies in the

ground and excited states, respectively, Q0 is the shift of the

excited-state surface relative to the ground-state surface, and

ωeg is the minimum to minimum transition frequency between

the ground state and excited state.

Importantly, the exact quantum-mechanical ORFs can be

obtained for this model, in terms of the vibronic transition fre-

quencies and corresponding Franck-Condon coefficients.1 We

also assume that ωeg is a stochastic quantity satisfying Gauss-

ian statistics in the limit of motional narrowing, so that Rj(t1, t2,
t3) ) exp[-Γ(t1 + t3)]R̄j(t1,t2,t3), where Γ is the electronic

dephasing rate constant and {R̄j(t1, t2, t3)} correspond to the

undamped parts of the ORFs.

It should be noted that the special case where ωe ) ωg,

which corresponds to the one-dimensional version of the pop-

ular Brownian oscillator model,1 does not lend itself as a

benchmark for the problem at hand. This is because the

dynamics on the ground and excited states are governed by

exp[- iĤjt ⁄ p] ) exp[- iĤreft ⁄ p] exp+[- i∫0

t
dt' Ûj(t') ⁄ p]

(13)

Ûj(t) ) exp[iĤreft ⁄ p] (Ĥj - Ĥref) exp[- iĤreft ⁄ p] (14)

R1(t3, t2, t1) ) Tr[F̂gµ̂ge(t1) exp-[i∫t1

t1+t2 dt'Û(t') ⁄ p]µ̂eg(t1 +

t2)µ̂ge(t1 + t2 + t3) exp-[- i∫0

t1+t2+t3 dt'Û(t') ⁄ p]µ̂eg(0)] (15)

R1
GS(t3, t2, t1) )∫ dQ0 dP0 Fg,cl(Q0, P0)µge(Q0) ×

µge(Qt1
)µge(Qt1+t2

)µge(Qt1+t2+t3
) e-i∫

0

t1
dτU(Qτ)⁄p e-i∫

t1+t2

t1+t2+t3
dτU(Qτ)⁄p ≡

〈µge(Q0)µge(Qt1
)µge(Qt1+t2

)µge(Qt1+t2+t3
) e-i∫

0

t1
dτU(Qτ)⁄p e-i∫

t1+t2

t1+t2+t3
dτU(Qτ)⁄p〉g,cl

(16)

R2
GS(t3, t2, t1) ) R3

GS(t3, t2, t1) )

〈µge(Q0)µge(Qt1
)µge(Qt1+t2

)µge(Qt1+t2+t3
)

e-i∫
0

t1
dτU(Qτ)⁄p ei∫

t1+t2

t1+t2+t3
dτU(Qτ)⁄p〉g,cl (17)

Vg(Q̂) ) 1
2

ωg
2Q̂2; Ve(Q̂) ) pωeg +

1
2

ωe
2(Q̂ + Q0)

2 (18)
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potential surfaces that have the exact same shape. Indeed,

within the Condon approximation, a second-order cumulant

expansion based on the quantum-mechanical equilibrium

ground-state frequency-frequency correlation function is

known to provide the exact result in this case.1 Furthermore,

the LSC and FB-IVR approximations coincide with the exact

ORFs when ωe ) ωg. Thus, choosing a model system with ωe

* ωg is necessary for it to be a meaningful benchmark in the

context of the present study.

Exact 2D spectra for this model system, as well as the cor-

responding FB-IVR, LSC, and GS approximations, are shown in

Figures 1 and 2 at T ) 0.2pωg/kB (low temperature) and T )
5.0pωg/kB (high temperature), respectively. The results in these

figures were obtained for the following values of the param-

eters: ωe/ωg ) 1.25, Q0 ) (p/ωg)1/2, Γ ) ωg/(4π) and γ ) ωg/p.

We have also assumed that the frequency origin is set at (ω1,

ω3) ) (〈ωeg〉, 〈ωeg〉), where 〈ωeg〉 is the average of the stochas-

tic variable ωeg(t). Since sampling the initial state based on the

classical Boltzmann distribution clearly represents a poor

approximation at low temperatures, we have used the Wigner

distribution in order to generate the GS results in this case (see

bottom panels in Figure 1). We have also shifted the ω1 and

ω3 frequency axes by ωg/2 in the case of GS in order to

account for zero point energy effects.

As expected, the quantum-mechanically exact 2D spectra

consist of peaks at the various vibronic frequencies (see top

panels in Figures 1 and 2). The widths of these peaks are

determined by Γ, which was purposely chosen to be relatively

narrow in this case, and their intensities are determined by the

thermal weight of the initial state and the corresponding prod-

FIGURE 1. Two-dimensional spectra for a two-state chromophore with shifted different-frequency harmonic potential surfaces at T )
0.2pωg/kB. The x and y axes correspond to ω1/ωg and ω3/ωg, respectively. The spectra are shown for the specified values of the waiting time,
t2. Shown are the exact results (top panels) and the results obtained via FB-IVR (second panels from top), LSC (third panels from top), and GS
(bottom panels).
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ucts of Franck-Condon coefficients. The number of peaks is

seen to increase with temperature, which reflects the larger

number of initially populated ground vibronic states.

The 2D spectra obtained via FB-IVR are seen to be in excel-

lent agreement with the exact results, at both high and low

temperatures (see second from the top panels in Figures 1 and

2). However, it should be noted that the fact that the coher-

ent state width parameter, γ, was chosen to be constant

implies that FB-IVR is not exact for the system considered here.

More specifically, by assuming that γ is constant, FB-IVR

neglects the fact that what is a coherent state on one surface

corresponds to a squeezed state on the other surface. How-

ever, the relatively small difference between ωg and ωe implies

that the changes in the width will be rather small and, as a

result, have almost no effect on the spectra.

We next turn to the 2D spectra obtained via LSC (see third

from the top panels in Figures 1 and 2). The locations and rel-

ative intensities of the peaks that constitute the 2D spectra are

reproduced rather well at all values of t2. However, the peaks

are seen to be broader, which suggests that the LSC approx-

imation gives rise to nonphysical dephasing, which adds to the

physically meaningful electronic dephasing, thereby overes-

timating the line widths. This observation is consistent with the

previously reported inability of the LSC approximation to cap-

ture long-lived coherences because of overdamping, which

can be attributed to the fact that it is based on purely classi-

FIGURE 2. Two-dimensional spectra for a two-state chromophore with shifted different-frequency harmonic potential surfaces at T )
5.0pωg/kB. The x and y axes correspond to ω1/ωg and ω3/ωg, respectively. The spectra are shown for the specified values of the waiting time,
t2. Shown are the exact results (top panels) and the results obtained via FB-IVR (second panels from top), LSC (third panels from top), and GS
(bottom panels).
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cal all-forward dynamics and therefore lacks the ability to

account for interference effects.12,16,24 Thus, the LSC approach

would be particularly suitable for modeling 2D spectra in

molecular systems at ambient conditions where the ultrafast

physical dephasing is expected to dominate any nonphysical

dephasing.

Finally, we consider the spectra obtained via GS (see bot-

tom panels in Figures 1 and 2). Although the agreement

between the exact spectra and those obtained via GS at t2 )
0 is reasonable, significant deviations between the spectra

emerge at longer t2. It should be noted that unlike the case of

LSC, the deviations in the case of GS are qualitative and cor-

respond to different peak locations and relative intensities.

This is hardly surprising in light of the fact that the spectra

obtained via GS are insensitive to excited state dynamics.

Indeed, a breakdown of the spectra into contributions from the

various ORFs show that the deviations mostly come from R1

and R2, which correspond to Liouville pathways where the

dynamics during t2 is governed by the excited-state potential

surface. It should also be noted that the deviations between

GS and the exact results do not diminish with increasing tem-

perature, which testifies to the fact that GS does not repre-

sent a rigorous classical limit of the spectra.

IV. A Two-State Atomic Chromophore
Solvated in a Two-Dimensional Atomic
Liquid
The next model system that we consider consists of a single

atomic two-state chromophore in a 2D atomic liquid. The

details of the model were described in refs 9 and 11 and will

only be briefly outlined below for the sake of completeness.

A 2D simulation cell with periodic boundary conditions was

employed, which contained 25 atoms. The potential energy

for the ground and excited states was assumed to be pair-

wise additive with pair potentials of the Lennard-Jones (LJ)

type. One of the atoms was designated as the chromophore

and the LJ parameter σ in the chromophore-solvent interac-

tion pair potential in the ground state was assumed to be dif-

ferent from that in the excited state (σe ) 1.06σg). The Wigner

transform Fg,W(Q,P) was approximated via the local harmonic

approximation.9 The results reported below are based on sim-

ulations performed at the following temperature and densi-

ty: T* ) kBT/ε ) 1.07, and F* ) Fσ2 ) 0.7, in terms of reduced

LJ units. The remaining results are also reported in terms of

reduced LJ units (for comparison, the real time unit is 2.16 ps

in the case of liquid argon).

The recently reported calculated 2D spectra for this sys-

tem (within the Condon approximation) via the FB-IVR, LSC,

and GS approximations11 are reproduced in Figure 3. The

main observation is that while the 2D spectra in the case of

GS are symmetrical with respect to reflection about the diag-

onal (ω1 ) ω3), they become increasingly asymmetrical with

increasing t2 when calculated via the LSC and FB-IVR approx-

imations. The deviations from diagonal symmetry can be

traced back to contributions from R1 and R2, which involve

nonequilibrium solvation dynamics on the excited-state poten-

tial surface during t2. The signature of these nonequilibrium

solvation processes is captured within the LSC and FB-IVR

methods but missed by the GS method. We also note the

quantitative similarity between the spectra obtained via LSC

and FB-IVR, which suggests that the line broadening observed

in the 2D spectra calculated via LSC reflects genuine physi-

cal dephasing.

V. A Moderately Strong H-Bonded
Complex in a Dipolar Liquid
The last model system that we will consider consists of a mod-

erately strong H-bonded complex, AHB, in a dipolar

liquid.25-28 Within this model, it is assumed that the proton

moves along a one-dimensional axis connecting the donor

and acceptor. The donor, A, and acceptor, B, are modeled as

single particles and parametrized to represent phenol and tri-

methylamine, respectively. The intramolecular potential sur-

face as a function of the A-B and A-H distances is as in refs

26-28 with the equilibrium A-B distance set to 2.7 Å. The

charges on A and B are assumed to be explicitly dependent

on the position of the proton. The intramolecular potential sur-

face has a double-well profile as a function of the proton dis-

placement, thereby giving rise to tautomeric equilibrium

between covalent and ionic forms: AH-Bh A--H+B. The sol-

vent is assumed to consist of a liquid of methyl-chloride mol-

ecules, which are modeled as rigid dipolar diatomic molecules.

The complex-solvent and solvent-solvent interactions are

modeled in terms of site-site LJ and Coulomb interactions,

and the corresponding force field parameters are as in refs

26-28.The photoactive DOF is taken to be the high-frequency

H-stretch. The remaining DOF are assumed to follow the high-

frequency H-stretch adiabatically, so the vibrational energy lev-

els and wave functions are obtained by diagonalizing the

adiabatic protonic Hamiltonian on-the-fly.26-28 Molecular

dynamics simulations were performed with a single AHB com-

plex and 255 methyl-chloride molecules in a cubic simula-
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tion box with periodic boundary conditions at a temperature

and density of 250 K and 0.012 Å-3, respectively.

The ground (g) and first-excited (e) free energy surfaces

(FESs) are shown as a function of the solvent polarization (as

defined in refs 26, 29, and 30) in the top panel of Figure 4.

The ground-state FES has a double-well form, which reflects

coexistence between the ionic and covalent tautomers (equi-

librium composition: 65% ionic and 35% covalent; proton

transfer rate constant: 0.16 ps-1).30 In contrast, the excited FES

has the shape of a single well whose minimum is centered in

the vicinity of the ground-state transition state between the

ionic and covalent tautomers. It is important to note that the

ionic/covalent tautomers and transition state correspond to

stable and unstable solvent configurations, respectively, only

on the ground-state surface. In contrast, the solvent configu-

rations corresponding to the transition state and the ionic/

covalent tautomers are stable and unstable, respectively, on

the excited-state potential. Thus, one can expect significant

solvation effects in this system.

The distribution of the transition frequency, ωeg, as obtained

from equilibrium simulations on the ground and excited

potential surfaces, is shown in the middle panel of Figure 4.

In the lower panel of Figure 4, we show the same distribu-

tions of ωeg but this time weighted by the square of the tran-

sition dipole moment, |µeg(Q)|2. The rather dramatic difference

between the distributions in the middle and lower panels of

Figure 4 can be traced back to a breakdown of the Condon

approximation due to the strong dependence of the transi-

tion dipole moment on Q, which makes the transition dipole

moments negligibly small within the intermediate frequency

range ∼(500,1500) cm-1.27 It should also be noted that the

high-frequency band on the lower panel of Figure 4 consists

of contributions from the ionic (∼2500 cm-1) and covalent

(∼2250 cm-1) tautomers, while the low frequency band

FIGURE 3. Two-dimensional spectra for a two-state atomic chromophore in 2D liquid solution at the specified values of the waiting time t2
as calculated within the FB-IVR (upper panel), LSC (middle panel), and GS (bottom panel) approximations. The results are given in terms of
reduced LJ units. Reproduced from ref 11.
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(∼200 cm-1) arises from configurations in the vicinity of the

transition state.27

The 2D infrared (IR) spectra for this system as obtained via

the LSC and GS approximations are shown in the top and bot-

tom panels of Figure 5, respectively, for the specified values

of t2.27,31 We did not attempt to apply the FB-IVR method to

this model system because of the high computational cost of

such a calculation and the expectation that spectra calculated

via FB-IVR and LSC will be similar in the presence of ultrafast

dephasing (see Figure 3). We have also substituted the Wigner

distribution in the case of LSC by the corresponding classical

ground state equilibrium probability density, which is expected

to be an excellent approximation near ambient conditions.

The main spectral features in the 2D spectra obtained via

GS and LSC at t2 ) 0 are similar. More specifically, one

observes three diagonal peaks that correspond to the ionic

(∼2500 cm-1), covalent (∼2250 cm-1), and transition-state

(∼200 cm-1) subpopulations. The similarity of the spectra at

t2 ) 0 can be traced back to the fact that solvation on the

average potential is limited by the short dephasing time dur-

ing t1 and t3 (∼150 fs). Nevertheless, the effect of nonequilib-

rium solvation on the average potential is discernible even at

t2 ) 0 and manifests itself by the increased intensity of the

transition-state peak at the expense of the ionic and cova-

lent peaks in the LSC-based 2D spectrum. This is because sol-

vation on the average surface during t1 and t3 drives the

solvent away from configurations that correspond to the ionic

and covalent species and toward configurations that corre-

spond to the transition state, thereby enhancing contributions

from the latter at the expense of the former.

The deviations between the spectra obtained via LSC and

GS become significantly larger with increasing t2. Within LSC,

starting at equilibrium on the ground-state potential, the first

pulse is most likely to excite the system within the ionic, cova-

lent, and transition-state bands. As discussed above, the state

of the system changes relatively little during the short time it

spends on the average potential between the first and sec-

ond pulse (t1). The second pulse then either returns the sys-

tem to the ground-state potential (R3 and R4) or places it on

the excited state potential (R1 and R2). Thus, in the case of R3

and R4, the ensuing nonequilibrium solvation during t2 drives

the system away from the transition-state configuration and

toward the ionic and covalent configurations. However, the

opposite is true in the case of R1 and R2, where the ensuing

nonequilibrium solvation during t2 drives the system away

from the ionic and covalent configurations and toward the

transition-state configurations. Since the intermediate spec-

tral range between the high-frequency ionic/covalent band

and low-frequency transition-state band is photoinactive, sol-

vation actually manifests itself by a loss of signal at interme-

diate times (see t2 ) 125 fs of the upper panel of Figure 4).

However, the signal reappears when the system reaches either

the ionic/covalent bands, in the case of R3 and R4, or the tran-

sition state, in the case of R1 and R2.

Upon complete solvation (t2 ≈ 500 fs26), one expects the

dynamics during t1 to become uncorrelated with that during

t3. Thus, within LSC, the 2D spectrum is asymptotically pro-

portional to IALSC(ω1)IELSC(ω3) + IALSC(ω1)IALSC(ω3), where IALSC(ω) and

IELSC(ω) correspond to the Fourier-Laplace transforms of

〈µge[Q0]µge[Qt] e-i∫0
t dτU(Qτ)/p〉g,cl and 〈µge[Q0]µge[Qt] e-i∫0

t dτU(Qτ)/p〉e,cl,

which are closely related to the absorption and emission spec-

tra, respectively, as calculated within LSC (i.e., 〈 · · · 〉g,cl and

〈 · · · 〉e,cl indicate initial sampling that corresponds to equilib-

rium on the ground or excited potential surfaces, respectively,

and the dynamics of Qτ during t1 and t3 takes place on the

average potential). It should also be noted that the contribu-

FIGURE 4. Top panel, the ground (blue, gg), excited (red, ee), and
average (magenta, ge) free energy surfaces of the H stretch in a
H-bonded complex dissolved in a dipolar liquid as a function of the
solvent polarization; middle panel, the distribution of the transition
frequency, ωeg, as obtained from equilibrium simulations on the
ground (blue) and excited (red) potential surfaces; bottom panel, the
same distributions of the transition frequency, ωeg, weighted by the
square of the transition dipole moment, |µeg(Q)|2.
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tions from R1 and R2, which give rise to a spectral feature of

the form IALSC(ω1)IELSC(ω3), dominates the spectrum.

In contrast, within GS, R2 ) R3, R1 ) R4, and the dynamics

takes place exclusively on the ground-state potential surface.

As a result, the diagonal transition-state peak starts out weaker

at t2 ) 0 and vanishes at longer t2 because the transition state

corresponds to unstable solvent configurations on the ground-

state potential surface. At even longer t2, the dynamics dur-

ing t1 become uncorrelated with that during t3, so the 2D

spectrum becomes proportional to IAGS(ω1)IAGS(ω3), where IAGS(ω)

corresponds to the Fourier-Laplace transform of 〈µge[Q0]µge[Qt]

e-i∫0
t dτU(Qτ)/p〉g,cl. Thus, the LSC and GS spectra are observed to

approach fundamentally different limits at long t2.

VI. Conclusions and Outlook

In this paper, we explored the ability of the FB-IVR, LSC, and

GS methods to describe the signature of nonequilibrium sol-

vation dynamics on multidimensional spectra. The analysis

was performed on three model systems that range from a

benchmark corresponding to a two-state chromophore with

shifted harmonic potential surfaces that differ in frequency to

a more realistic model of a moderately strong H-bonded com-

plex in a polar liquid.

Our results demonstrate the many ways in which 2D spec-

tra can be used in order to probe nonequilibrium solvation

dynamics in real time with an unprecedented level of detail.

More specifically, we have found that nonequilibrium solva-

tion processes can impact 2D spectra in a qualitative manner

by breaking their symmetry, shifting spectral features, inten-

sifying some spectral features at the expense of others, and

giving rise to completely new spectral features that are absent

from the spectra obtained via the GS method. The observa-

tion of many of these signatures relies on the unique ability

of 2D spectroscopy to correlate between transition frequen-

cies at different times and opens the door to new ways of

using 2D spectroscopy to directly probe the many important

chemical events, such as the formation of the transition state,

which occur far from equilibrium on the ground-state surface.

We have also found that unlike the commonly used GS

method, the LSC and FB-IVR methods can capture the signa-

ture of solvation dynamics on the spectra in an accurate man-

ner. Our results suggest that 2D spectra calculated via the LSC

method are similar to those calculated via the FB-IVR method

in the presence of ultrafast dephasing, which is typically the

case in complex condensed phase systems. This observation

gives credence to the use of the LSC method for modeling 2D

spectra in complex systems for which an exact quantum-me-

chanical, or even the approximate but rather expensive FB-

IVR method, may not be feasible.
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